Обзор приложений для создания 3d-фото

Как сделать 3D фото? (за 5 минут)

Если вы думаете, что создание 3D фотографии из уже готового материала – это тяжелый и длительный процесс, то вы сильно ошибаетесь.

В этой статье представлена пошаговая инструкция, которая детально расскажет о каждом шаге создания 3D фото за несколько минут. С помощью программы After Effects и специального дополнения Volumax вы сможете быстро и легко достичь подобного результата:

Примеры 3D фотографий

Также вы можете посмотреть полное видео презентации, где показываются лучшие работы, созданные при помощи этого дополнения:

Посмотрите полный процесс создания 3d фото на английском языке:

дублируем урок на русском языке.

Что такое дифференциальный рендерер

Думаю, стоит поговорить о том, что такое дифференциальный рендерер и зачем он нужен. Давайте представим, что мы сами пытаемся решить эту проблему компьютерного зрения, но необязательно с помощью Machine Learning. Двухмерная фотография — это проекция трёхмерной сцены. 3D-сцена — это набор 3D-сеток, вершин, граней, текстурных карт и источника света, просматриваемых с камеры или точки обзора. Для простоты ограничим сцену одним 3D-объектом. Если получилось восстановить исходную 3D-сцену, на основе которой была создана 2D-фотография, мы должны быть способны проверить это, спроецировав 3D-объект на 2D с использованием той же точки зрения, что использовалась для создания входной 2D-фотографии.

Прототипирование опыта

Прототипирование опыта – это тип прототипирование, которое представляет собой воссоздание ситуаций для тестирования решений. Чтобы смоделировать опыт, нужно правильно подобрать место и создать обстоятельства, при которых человеку может понадобиться ваш продукт или услуга. С помощью прототипирования опыта можно разыгрывать целые ситуации, объёмные опыты и нахождение в пространствах, где трудно обойтись одним предметом.

Прототипирование опыта проводится так:

1  
Выберите ситуацию, в которой человеку пригодится ваш продукт для решения проблемы.
2 Напишите сценарий. Опишите подробно обстоятельства, действующие лица, место действия.
3 Попробуйте получить доступ к месту из выбранной ситуации. Если нет возможности, воссоздайте его в тех условиях, которые есть.
4 Разместите прототип решения в этом месте.
5 Распределите роли среди коллег и обыграйте сценарий.
6 Пригласите реальных пользователей. Расскажите, что от них требуется, и попросите помочь в тестировании продукта.
7 Понаблюдайте за их поведением и прототипом решения.
8 Попросите их описать свои мысли и ощущения.
9 Запишите результаты и сделайте выводы.

Теперь у вас в арсенале появились новые средства дизайн-мышления – методы, позволяющие оценивать найденные идеи и решения, выявлять их плюсы и минусы. Следующим этапом станет выбор лучшего варианта, и о том, как он осуществляется, мы поговорим в пятом уроке. А сейчас предлагаем подвести итог и пройти небольшой тест на проверку знаний.

Что можно печатать на 3D-принтере?

На фото: обод для DIY-очистителя воздуха с угольным наполнением.

Вы удивитесь, но напечатать можно практически все. Единственное, чем вы ограничены — площадью печати.

У моих, собранных самостоятельно, 3D-принтеров область печати составляет: 200 мм х 200 мм х 160 мм и 300 мм х 300 мм х 280 мм. В такие размеры можно вписать практически любой предмет. Игрушки, механические части, элементы интерьера, компоненты для сломанных бытовых приборов, всевозможные крючки, подставки — список можно продолжать бесконечно.

А те модели, что не помещаются на столике 3D-принтера, можно разрезать на части и затем склеить. Поверьте опыту, место шва при должной обработке практически невозможно разломать.

Приведу лишь несколько примеров из жизни, когда 3D-печать позволила не только решить бытовые проблемы, но и неплохо сэкономить:

На фото: та самая заглушка от шлема.

и это лишь малая часть того, что было распечатано.

Чтобы вам было понятнее, на что вообще способна печать, полистайте модели на сайте ThingiVerse. Все, что вы найдете там, уже кто-то печатал.

Моделирование физических объектов

Физические объекты моделируют:

A С помощью подручных средств – бумаги, картона, пластилина, скотча, ножниц.
B С помощью «Лего».
C С помощью 3D принтеров.
D С помощью программ для 3D моделирования.

Давайте подробнее разберём каждую технологию.

Моделирование подручными средствам

При моделировании подручными средствами нужно всего лишь следовать простому алгоритму:

  1. Определите, модель какого продукта вы будете создавать.
  2. Изучите аналоги, в данный момент существующие на рынке.
  3. Изобразите прототип на листе бумаги или создайте из материалов, которые найдёте. Вспомните, например, как вы делали модели вулканов из пластилина в школе.

К плюсам данного вида моделирования можно отнести:

  1. Короткий срок создания моделей.
  2. Не нужно тратить деньги на покупку дорогих материалов.
  3. Можно дорабатывать на ходу.

Среди минусов есть следующие:

  1. Нельзя сделать анимированные и интерактивные модели.
  2. Модели быстро изнашиваются.

Поэтому при моделировании подручными средствами избегайте перфеционизма, не тратьте много времени на каждый прототип, при создании модели постоянно думайте о том, как люди будут пользоваться продуктом.

Лего-моделирование

Моделипрование с помощью «Лего» выполняется не менее просто:

  1. Найдите как можно больше наборов «Лего».
  2. Соберите из деталей прототип будущего изделия.
  3. Не зацикливайтесь на одной идее. Разбирайте, собирайте заново, экспериментируйте.
  4. Пригласите собирать модели всех членов команды.

Для получения наилучшего результата советуем вам прочитать книгу Тима Брауна «Дизайн-мышление в бизнесе», где рассказывается о том, как компания IDEO создавала из конструктора прототипы устройств для введения в кровь инсулиновых инъекций. Каждый раз создавая прототип, представляйте, что вы рассказываете историю.

Моделирование с использованием 3D печати

Для создания 3D моделей используются следующие технологии:

1  
FDM (Fused Deposition Modeling). Материал выдавливается слой за слоем на поверхность. Эта технология применяется в биомедицине, кулинарии и промышленном производстве.
2  
Polyjet. Материал выкладывается маленькими кубиками.
3  
LENS (Laser Engineered Net Shaping). Порошковый материал выдувается из отверстия и с помощью лазера наносится на поверхность.
4  
LOM (Laminated Object Manufacturing). Принтер режет материал ножом и склеивает части в модель.
5  
SL (Stereolithography). Внутри принтера находится резервуар с полимером. Когда лазер проходит по нему, полимер становится твёрдым. Таким образом получается прототип.
6  
Laser Sintering (лазерное спекание). Эта технология очень похожа на предыдущую. Единственное отличие – вместо полимера в ней используется порошок. Лазерное спекание позволяет, например, делать коронки для зубов.
7  
3DP (Three Dimensional Printing). На порошок наносится клей, который склеивает его в гранулы. Получившийся материал напоминает гипс.

3D-печать – это достаточно сложная технология, поэтому для ее применения лучше всего привлекать квалифицированных специалистов.

Моделирование с использованием программ

То же самое моделирование, что и в случае с 3D, только здесь не надо «марать» руки, ведь весь процесс происходит на экране компьютера. Вот список 10 лучших бесплатных программ, которые помогут вам прототипировать, не выходя из зоны комфорта:

  • Wings 3D.
  • DAZ Studio.
  • Open Scad.
  • 3DReshaper.
  • 3D Crafter.
  • PTC Creo.
  • LeoCAD. Виртуальное Лего-моделирование.
  • Houdini Apprentice.
  • FreeCAD.
  • Sculptris.

Руководство пользователя для каждой из программ можно найти в свободном доступе в Интернете.

TinkerCAD

Бесплатное приложение для тех, кто только начал заниматься моделированием и хочет получить на первое время простейший инструмент, пусть и с несколько ограниченными возможностями. Редактор работает в браузере в онлайн-режиме, что еще больше упрощает его использование — устанавливать ничего не придется, но надо быть постоянно онлайн. Для совсем неподготовленных пользователей на сайте приложения есть несколько бесплатных видеоуроков.

TinkerCAD — удобный и простой онлайн-инструмент

Модели в TinkerCAD строятся из простых форм, которые есть в шаблонах. Также можно загружать свои изображения или использовать модели, созданные другими пользователями (меню Community), в том числе те, которые сложно нарисовать новичку.

В TinkerCAD можно делать детальки для конструктора и прочую мелочевку, но со сложными конструкциями редактор уже не справится. Большой плюс в том, что программа позволяет сначала создать фигуру в 2D и преобразовать ее в 3D-объект. Единственный минус – русский язык не поддерживается, но интерфейс и так предельно понятный.

Базовые знания

Перед началом съемки необходимо ознакомиться с азами настройки камеры. В настоящее время в Интернете полно сайтов, где желающие могут самостоятельно подтянуть знания по основам работы фотографа. По большому счету, разобраться нужно с несколькими параметрами.

Светочувствительность (ISO), как следует из названия, определяет, насколько чувствительна камера к свету. Чем выше уровень светочувствительности, тем заметнее будут шумы (дефекты изображения); верна и обратная пропорциональность: чем ниже ISO, тем менее выражены шумы на фотографии. По словам специалистов, самые качественные изображения получаются тогда, когда съемка происходит на низких значениях ISO: 50, 100, 200. Верхний предел – ISO:400.

Следующий параметр – приоритет диафрагмы. Он представляет режим автоматического управления экспозицией фотоаппарата или видеокамеры, при котором автоматика бесступенчато выбирает выдержку затвора (время считывания кадра матрицей), в зависимости от установленной вручную диафрагмы. Для наиболее детального снимка выбор делается в сторону значения f11.

Наконец, последний основной параметр – скорость затвора или время, в течение которого затвор остается открытым и свет попадает на сенсор камеры. Если время выдержки невелико, можно «заморозить» движение.

Длинная выдержка позволяет получить «размазанное» движение (motion blur). Его часто применяют в рекламной фотографии автомобилей и мотоциклов, когда нужно передать ощущение скорости или движения автомобиля.

При выдержке более 1/60 камера чувствительна к сотрясению, и снимки могут получиться смазанными. Чтобы этого не произошло, при съемке с длинной выдержкой используется штатив.

Часто на камере в качестве значения выдержки бывает указан только знаменатель. Например, 125 означает скорость затвора 1/125 с. В значении выдержки знаменатель дроби должен, по меньшей мере, равняться фокусному расстоянию или быть больше него. Например, объективом 50 мм можно снимать с рук при выдержке не более 1/50 с, объективом 200 мм – не более 1/200 с.

Программа может исправить огрехи съемки

А на 3D-печати можно заработать?

На фото: именная подставка под карандаши и ручки для ребенка.

Можно. Но не сразу и не баснословные деньги. Здесь все зависит от вашей усидчивости и уровня подготовки. Прежде, чем вы получите печатные модели, качество которых устроит не только вас, но и потенциального заказчика, придется изрядно попотеть.

Помимо десятка настроек в программе-слайсере предстоит освоить 3D-моделирование. Все это возможно, но при наличии достаточного количества времени.

После первых заказов вы упретесь в масштабирование, когда понадобится покупать еще парочку принтеров, то есть, инвестировать снова и снова.

Чтобы понять масштабы заработка, полистайте доски объявлений по запросу «услуги 3D печати». А дальше по старинке: взвесьте любую деталь в вашем доме и оцените стоимость такой же напечатанной. Добавьте к этому потраченные на изучение месяцы и сопоставьте рентабельность.

Blender 3D

Новички, освоив простейшее ПО, могут использовать систему проектирования Blender — это один из самых функциональных инструментов на сегодня, при этом полностью бесплатный. При желании в программе можно создать короткометражную анимацию «от и до» — она поддерживает даже средство для видеомонтажа. Что касается наших задач, то здесь есть инструменты как для разных видов моделирования, так и для трехмерного скульптинга.

Blender 3D — одно из самых многофункциональных приложений для моделирования

У редактора есть активное сообщество, где можно искать обучающие материалы, задавать вопросы и выбирать нужные расширения, созданные самими пользователями (Blender 3D имеет открытый код). Для знакомства с интерфейсом в обязательном порядке придется освоить несколько уроков — часть действий вообще можно совершить только при помощи комбинации клавиш, а с интуитивностью у приложения не все гладко.

Некоторые пользователи жалуются на медленную работу и необходимость настройки не самых нужных параметров наподобие освещения, но при этом Blender 3D остается одной из самых функциональных программ для моделирования.

Градиентный подход

Попробуем найти способ разумнее! Как насчёт того, чтобы начать с исходной сетки, например сферы, топологически похожей на объект, который мы пытаемся восстановить, а затем попытаться внести изменения, чтобы сделать эту сферу похожей на часы? Вот, что возможно изменить:

  • геометрию входной сетки перемещением вершин; 

  • цвета в текстуре;

  • входное освещение.

Если подумать, это похоже на то, что делает художник по 3D-моделированию: выбирает похожую на объект базовую геометрию, который он пытается реконструировать. Ключевой момент: если мы вносим изменения в геометрию сферы, то ожидаем, что геометрия будет сходиться или расходиться с целевой геометрией, и то же самое верно для текстуры и источника света. Чтобы проверить приближение к целевой форме — часам, нужно проецировать сформированную сферу в 2D на каждом шаге, используя точку обзора, аналогичную точке на входном изображении, и проверять приближение.

123D Catch

Бесплатное приложение от Autodesk для десктопов и мобильных устройств, при помощи которого фотоснимки преобразуются в трехмерные модели. Но не стоит сразу замахиваться на создание модели из одной фотографии — понадобится несколько снимков с разных ракурсов, чтобы приложение смогло создать нормальный 3D-объект. И чем больше, тем лучше. В идеале же придется освоить еще STL-редактор, чтобы «допилить» то, что создано в 123D Catch на основе фотографий — в самой утилите этой возможности нет.

123D Catch создает 3D-модель на основе фотографий

Конечно, о хорошей детализации итогового объекта можно только мечтать, но для новичков, желающих создать модель по образу и подобию какого-либо предмета — это то, что нужно.

3D-печать – это дорого?

На фото: самодельный мини-плоттер.

Я бы не сказал. Два года назад, когда я решил, что займусь сборкой 3D-принтера самостоятельно, я составил смету на покупку комплектующих.

Электроника с механикой и одной катушкой пластика приблизительно обошлись мне в 7 500 рублей. Да, пришлось ждать доставки комплектующих с AliExpress, спалить пару плат и драйверов, но этот опыт однозначно того стоит.

На фото: держатель линз для микроскопа.

Скажу сразу, если вы раньше не сталкивались с самостоятельной сборкой электронных устройств, придется потратить несколько недель, а то и месяцев, на изучение темы. Но тут каждый выбирает для себя сам: заказывать принтер в Китае или на доске объявлений в родном городе (простенький вариант в диапазоне от 9 000 до 25 000 рублей) или собрать его самостоятельно.

Отдельно хотел бы предостеречь от покупки готовых брендовых 3D-принтеров. Если вам кажется, что отдав 40 – 50 тысяч рублей вы сразу же станете гуру 3D-печати, вынужден вас разочаровать. При прямых руках принтер за 10 000 рублей может печатать в разы лучше, чем раскрученный брендовый агрегат за 50 тысяч. Проверено лично.

Цена расходников. Средняя стоимость катушки нормального пластика весом 0,75 кг варьируется от 400 до 700 рублей. Чтобы понять, насколько хватит такой катушки, возьмите любую пластиковую игрушку или предмет и взвесьте ее.

Поверьте, с одной катушки филамента можно напечатать ну очень много полезных и крутых вещей.

Вакцины на основе матричной РНК

РНК-вакцина — одна из самых передовых разработок в медицине за последние 20 лет. Сейчас есть две вакцины, созданные по этой технологии: Pfizer и Moderna. Обе — против коронавируса.

Обычные — векторные — вакцины содержат ослабленный или неактивный возбудитель вируса. Вакцины на основе мРНК побуждают организм вырабатывать фрагмент белка, содержащийся в возбудителе COVID-19, который тут же атакует иммунная система. В результате возникает сильный иммунитет к вирусу, организм становится устойчивым к заражению.

Матричные (информационные) РНК хороши тем, что их легко модифицировать под любой новый штамм вируса. Их также можно использовать для борьбы с инфекциями (например, малярией), раком, серповидноклеточной анемией, ВИЧ и другими тяжелыми заболеваниями.

3D-печать

Во время пандемии COVID-19 аддитивные технологии стали выгодной альтернативой традиционному производству, требующему огромных инвестиций и ресурсов. Еще одно весомое преимущество — значительно меньший уровень отходов.

По данным Grand View Research, объем мирового рынка 3D-печати в 2019 году оценивался в $11,58 млрд, а с 2020 по 2027 год его среднегодовой прирост составит более 14%. К 2027 году в мире будет 8 млн 3D-принтеров — почти в шесть раз больше, чем в 2018-м. 77% из них приходится на промышленные принтеры. С помощью 3D-печати уже создают одежду и обувь, предметы интерьера, механические детали и даже протезы. На 3D-принтерах печатают многие детали для двигателей Rutherford, устанавливаемых на ракете-носителе Electron.

Индустрия 4.0

Безопасно ли печатать двигатели самолетов на 3D-принтере

В медицине и здравоохранении на 3D-принтерах печатают кабели и другие детали для медицинского оборудования. Еще один удивительный эксперимент — 3D-печать фрагментов человеческих костей прямо в организме, вместо поврежденных или утраченных. Для этого используют специальные биосовместимые чернила.

Аддитивные технологии применяются в архитектуре: из отпечатанных деталей возводят целые каркасные дома, что делает их намного дешевле обычных аналогов. Как пишет The Guardian, в калифорнийской Коачелла Вэлли такими застроили целый микрорайон. Компания-застройщик Mighty Buildings утверждает, что это позволило сэкономить 95% рабочего времени строителей.

Выпуск YouTube-канала «Индустрии 4.0», посвященный строительству домов с помощью 3D-печати

Сейчас мы в шаге от того, чтобы использовать 3D-печать для создания необходимых объектов на поверхности Луны, используя для этого лунную пыль. Это позволит значительно упростить колонизацию спутника: не придется доставлять туда тяжелые грузы и технику.

Часть 3. Преобразование нескольких 2D-фотографий в 3D-модель в Windows 10/8/7

Когда вы превращаете одну фотографию в 3D-модель, это делается для простых домашних животных или для неожиданных случаев. В большинстве случаев вам нужно распечатать много изображений под разными углами. А затем используйте какой-нибудь профессиональный конвертер 3D-моделей, чтобы сшить их целиком. Что касается случая, Neutra 3D Pro — это рекомендуемая программа для преобразования фотографий в 3D-модель.

Шаг 1: Загрузите несколько фотографий в 3D-модель, а затем используйте метод выравнивания изображений для объединения разных изображений.

Шаг 2: После этого вам также понадобится фотография сбоку, чтобы использовать 3D-маскировку для создания модели.

Шаг 3: Использование 2D-маски несколько раз для удаления ненужной части из модели.

Шаг 4: Генерация облака точек также требуется для детального анализа точек для построения модели из фотографий.

Шаг 5: Наконец, вы можете уточнить поверхность модели и определить текстуру по фотографиям.

Если у вас есть какие-либо вопросы по преобразованию нескольких фотографий в 3D-модель, вы также можете найти более подробную информацию в следующем видеоуроке соответственно.

P.S.

На фото: процесс печати держателя подшипников для еще одного принтера:)

Рассказать о 3D-печати в одном материале невозможно. Это абсолютно новый увлекательный мир для закоренелого гаджетомана. Словами очень сложно передать тот восторг, когда спроектированная лично вам модель из цифровой превращается в физическую. Настоящая магия.

Ко мне часто обращаются знакомые с просьбой напечатать ту или иную деталь. Кому-то понадобилось крепление для GoPro, кто-то готовит модель для литья в метале, а для кого-то остро стоит вопрос установки уникального дизайнерского светильника в спальне.

Все эти задачи можно решить с помощью 3D-печати.

Как увлеченному данной темой человеку, мне тяжело судить интерес к таким материалам вас — читателей. Рассказывать о 3D-печати можно часами, но нужно подавать этот материал структурированно и последовательно.

Если вы готовы к освоению новой сферы и не против превратить уголок вашего дома в полноценную фабрику, я продолжу данный цикл материалов по 3D-печати

Спасибо за внимание:). iPhones.ru

Как живется с китайской фабрикой на кухне.

iPhones.ru

Как живется с китайской фабрикой на кухне.

Космические технологии, которые мы используем уже сейчас

Кроссовки с инновационной подошвой

Nike Air

В 1970-е годы инженер NASA Фрэнк Руди придумал, что одежду космонавтов можно сделать более герметичной за счет воздушных прослоек. Разработка Руди стала толчком для создания обуви с полыми подошвами, в которых амортизация снижает нагрузку на суставы во время движения. Происходит это за счет расположенных под пяткой и передней частью стопы подушечек с взаимосвязанными воздушными ячейками. Свою идею инженер начал предлагать производителям кед и ботинок, но откликнулись на космическую разработку только в компании Nike. Дизайнеры Nike решили выставить технологию напоказ и поместили воздушную капсулу в «окошке» прямо под пяткой — так появились Nike Air.

Но кроссовки Nike Air — не единственная модель спортивной обуви, которая появилась благодаря освоению космоса. В 2003 году за несколько минут до приземления разбился шаттл NASA «Колумбия». Установили, что причиной аварии было падение куска теплоизоляционного кислородного бака еще при старте. Это произошло из-за разрушения наружного теплозащитного слоя на левой части крыла.

Adidas AlphaBOUNCE

Во время расследования NASA использовало стереофотограмметрическую систему ARAMIS. Суть ее в следующем. Две синхронизированные камеры снимают процесс столкновения двух материалов. Далее программное обеспечение анализирует их деформацию. Технология похожа на человеческое зрение, которое видит окружающий мир в трехмерной плоскости. «С помощью двух камер мы можем точно понять, приближается или удаляется объект, и оценить расстояния, которые оно преодолевает», — объяснил Джон Тайсон, президент компании, которая построила стереофотограмметрическую систему, используемую NASA.

Такую же технологию решила использовать Adidas для создания новой модели кроссовок AlphaBOUNCE, которые презентовали в 2016 году. Для этого были проанализированы движения ног марафонцев босиком и в обуви. Выяснили, что во время бега кроссовок сжимает сухожилие. Поэтому решили сделать v-образное отверстие в задней части ботинка, чтобы нога могла свободно двигаться. Также разработчики создали материал под названием Forgedmesh, который обеспечивает опору ноги и гибкость движения одновременно.

Фото: NASA

Плавательный костюм

В 2008 году NASA совместно со спортивным брендом Speedo разработало плавательный костюм для спортсменов. Он снижает сопротивление воды на 38%. Это увеличивает скорость пловцов примерно на 4%. Более того, он максимально поддерживает мышцы и не ограничивает движения.

Бесшовный костюм производят из высокотехнологичной сверхлегкой водоотталкивающей ткани. Ткань состоит из переплетенных нитей эластана-нейлона и полиуретана.

Производители утверждают, что благодаря этому костюму у спортсменов на 1,9-2,2% выше вероятность победить. Американские пловцы Натали Кафлин и Майкл Фелпс уверены, что стали олимпийскими чемпионами в 2008-м в том числе благодаря костюму от NASA. На Олимпиаде в Пекине 98% медалистов по водным видам спорта были именно в этом костюме, побив заодно 25 мировых рекорда.

Фото: NASA

Цифровая фотография

Техническим оборудованием для съемки высадки на Луну «Аполлон-11» обеспечила шведская компания Hasselblad. Полвека спустя производители фотоаппаратов снова вернулись к космической теме и сделали камеру для смартфона OnePlus 9 Pro, которая позволяет снимать Луну, используя ночной режим, суперзум и другие инструменты.

По сути, все, что теперь умеют делать камеры, — результат освоения космоса. Это относится не только к профессиональной оптике, но и к матрице, которую используют для компактных девайсов. Чтобы улучшить качество изображения и уменьшить размеры камер для межпланетных миссий придумали технологию CMOS-матриц.

CMOS в цифровых устройствах

Это устройство визуализации на основе полупроводниковых приборов и оксида металла, которое может принимать и обрабатывать световые импульсы и переводить их в изображение. Ее преимущество заключается в низком энергопотреблении, возможности захватывать и обрабатывать изображение. CMOS-матрицы начали создавать еще в 1960-х годах, а в 1990-е их начали использовать в различных цифровых устройствах.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Радио и техника
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: