10 современных устройств, которые безнадежно устарели

Не читайте с AMOLED-экранов, а то угробите зрение

Как видите, у IPS-экранов на iPhone 8 и iPhone 11 мерцаний нет.

В 2018 году я купил себе Samsung Galaxy S8. Это был один из моих первых флагманских смартфонов, который к тому же имел необычный дизайн. Закруглённый с левой и правой стороны AMOLED-дисплей завораживал, правда пока я просто пользовался этим телефоном на повседневке.

При попытках читать с него книги, я столкнулся с головной болью и режущими ощущениями в глазах. Проходило буквально 10-15 минут, и я чувствовал довольно сильный дискомфорт. Это связано с тем, что дисплей имел ШИМ, а так как читал я в помещениях, где приходилось снижать яркость, мерцания становились более заметными для зрения.

В тему: Какой дисплей лучше: OLED или IPS. Примеры и тесты

В итоге это приводило к утомлению, и чтение со смартфона оказалось так себе идеей. Всё равно я продолжал это периодически делать, но вовремя остановился по совету окулиста. Дело в том, что мозг улавливает эти мерцания и не может определиться, какую команду послать мышцам глаз: сузить зрачок или наоборот расширить, потому что за микровспышками он не успевает, и глаза находятся в напряжённом состоянии.

Qualcomm Snapdragon 410, 610, 615, 808 и 810

Вслед за Apple свои 64-битные ARM-процессоры поспешила анонсировать компания Qualcomm, причем сразу пять моделей. Правда, пока ни одна из них в коммерческих смартфонах или планшетах не применяется. Скорее всего, расцвет эпохи 64-битных Android-устройств состоится в начале 2015 года на выставках CES и MWC.

Однокристальная система Snapdragon 410 (MSM8916) – младшая из анонсированной 64-битной линейки Qualcomm. Она включает в себя четыре ядра Cortex-A53 с частотой от 1,2 ГГц, графический ускоритель Adreno 306 и, что интереснее всего, навигационный модуль с поддержкой спутниковых сетей GPS, ГЛОНАСС и даже китайской Beidou. Применять Snapdragon 410 планируют в недорогих смартфонах на базе Android, Windows Phone и Firefox OS.

Те же четыре ядра Cortex-A53, что у 410-того, содержит чип Snapdragon 610 (MSM8936), вот только графика у него улучшенная Adreno 405. Тогда как Snapdragon 615 (MSM8939) схож с 610-тым графикой, но процессорных ядер Cortex-A53 у него вдвое больше – восемь Cortex-A53.

В отличие от 410, 610, 615 моделей, выполненных по 28-нм техпроцессу, чипы Snapdragon 808 (MSM8992) и 810 (MSM8994) будут производиться по передовым 20-нм технологическим нормам. Они оба строятся по схеме big.LITTLE: два (модель 808) или четыре (810) мощных ядра Cortex-A57 и четыре энергоэффективных Cortex-A53. Графика представлена Adreno 418 и Adreno 430 соответственно. Кроме того, старший Snapdragon 810 имеет встроенный контроллер оперативной памяти стандарта LPDDR4.

Но главный вопрос: когда именно компания Qualcomm представит собственную процессорную архитектуру на основе ARMv8, как это было со Scorpion и Krait (модифицированные ARMv7)?

Ускоритель для нейронных сетей

По сравнению с обычными процессорами тензорные специализируются на использовании искусственных нейронных сетей. Они состоят из множества связанных в сеть математических функций, которые имитируют человеческий мозг с его нервными клетками и их связями. Подобно нашему мозгу, нейронная сеть требует соответствующего ввода. Происходит обучение, к примеру, распознаванию речи, изображений — или правилам игры «Го».

Искусственная нейронная сеть включает несколько уровней нейронов. Каждый нейрон использует взвешенную сумму выходных значений связанных нейронов в предыдущем уровне. Правильная сравнительная оценка — ключ к успеху в Machine Learning, но ее сначала надо сделать, что на практике часто означает множественные операции с плавающей точкой.

В этой дисциплине лучшим выбором на самом деле являются графические процессоры. Чтобы потом отсортировать результаты поиска или предугадать ходы, нейронной сети больше не нужна высокая точность вычислений с плавающей запятой. Этот процесс требует выполнения очень большого количества операций умножения и сложения целых чисел.

Тензорный процессор Google состоит в основном из вычислительного блока, матрицы 256×256 единиц. Он работает с восьмибитными целыми числами, достигает вычислительной мощности, составляющей 92 триллиона операций в секунду, и хранит результаты в памяти.

На диаграмме показано, что матрица занимает лишь около четверти площади процессора. Остальные компоненты отвечают за постоянное обеспечение ядер новыми данными. Команды тензорные процессоры сами себе не подают — они поступают с подключенного сервера через PCI Express. Этим же путем передаются в ответ и ко­нечные результаты.

Сравнительные оценки, необходимые для вычислений нейронной сети, поставляет модуль памяти First-In/First-Out. Так как там мало что меняется для конкретного приложения, достаточно подключения через оперативную память DDR3. Промежуточные результаты помещаются в буферный накопитель объемом 24 Мбайт и снова поступают в вычислительный блок.

Энергопотребление в сравнении

Сравнение производительности процессоров на потребленный ватт электроэнергии демонстрирует большую эффективность тензорных процессоров.

Вычислительная мощность/ватт

Гонки с центральным и графическим процессорами

Тензорные процессоры вычисляют со скоростью 225 000 прогнозов для нейронной сети в секунду. CPU и GPU не выдерживают конкуренции.

Проблема обновления Windows

Ошибки обновления Windows могут возникать по нескольким причинам. Причины включают в себя пиратство Windows, отсутствие основных файлов, проблемы с лицензией и т. Д.

Проблема, однако, не так серьезна. Но если вы все еще хотите установить новейшее программное обеспечение и систему безопасности, вы должны это исправить.

Решения:

Решение довольно простое. Благодаря встроенному обнаружению ошибок и устранению неполадок, в Windows есть собственный механизм, чтобы это исправить.

Но если вы все еще не можете это исправить, я рекомендую пройти через официальное обновление Microsoft Microsft для исправления ошибок здесь .

В 45 раз быстрее обычного процессора

Хотя набор команд CISC (англ. Complex Instruction Set Computer — «компьютер с полным набором команд») тензорного процессора и может отработать сложные команды, их существует всего около десятка. И для большинства необходимых операций требуется только пять команд, в том числе команды чтения, выполнения умножения матрицы или вычисления функции активации.

За счет оптимизации вычислений искусственного интеллекта тензорные процессоры оказываются значительно быстрее обычных процессоров (в 45 раз) или графических процессоров (в 17 раз). В то же время они работают с большей энергоэффективностью.

И Google при этом находится лишь в начале пути: с помощью простых мер производительность тензорных процессоров можно увеличивать и дальше. Одна только установка оперативной памяти GDDR5 может утроить нынешнюю вычислительную мощность.

  • «Лаборатория Касперского» выяснила, чем опасен искусственный интеллект и возможен ли апгрейд человека
  • Учёные предположили, что искусственный интеллект превзойдет человека уже в ближайшие 45 лет

Фото: Google LLC

Бумажные книги круто, но неудобно

Всем, кто хочет научиться писать статьи, книги, сценарии очень советую «Школу литературного мастерства» Юргена Вольфа. В ней рассказываются базовые, но очень важные вещи, которые объяснят, как работает история, как придумывать идеи, как найти издательство в которое можно будет писать и как избежать творческих кризисов.

Наверняка найдутся люди, которые возразят, заявив, что бумажные издания ничто не сможет заменить. Отчасти я с ними соглашусь, но думаю, что в будущем книги продолжат существовать сугубо, как имиджевые вещи. Лично я, несмотря на то, что читаю в цифре, особо понравившиеся книги всё равно покупаю в бумаге и ставлю на полку. Правда, так было не всегда.

Спустя несколько лет чтения бумажных книг я выделил несколько стойких проблем, которые меня раздражали. Во-первых, у разных книг могут быть разные шрифты, разные размеры написания, разная вёрстка, и в некоторых случаях это приводит к тому, что читать становится просто невозможно, несмотря на классное содержание. Плюс, привыкнув к одному начертанию, сложно адаптироваться к другому.

Во-вторых, книги бывают разные. Я их разделяю на «карманные» и «домашние». Первые ты можешь положить к себе в поясную сумку и читать, где угодно. Вторые, это, как правило, какие-то расширенные издания для фанатов того, о чём эта книга.

Опираясь на свой опыт, могу сказать, что «карманные книги» чаще всего имеют проблемы в месте переплёта страниц, а постоянно напрягаться, отгибая или удерживая одну из сторон, меня раздражает. К «домашним» книгам претензий меньше, потому что читаешь ты их дома, расположившись как удобно, проблем с переплётом у них тоже меньше. Однако, брать их куда-то в дорогу или в кровать перед сном трудновато, потому что они тяжёлые и большие.

Так я пришёл к тому, что начал читать со своих гаджетов, но тут тоже всё оказалось не так радужно.

Память микропроцессора


Знакомство с подробностями, касающимися компьютерной памяти и ее иерархии помогут лучше понять содержание этого раздела. Выше мы писали о шинах (адресной и данных), а также о каналах чтения (RD) и записи (WR). Эти шины и каналы соединены с памятью: оперативной (ОЗУ, RAM) и постоянным запоминающим устройством (ПЗУ, ROM). В нашем примере рассматривается микропроцессор, ширина каждой из шин которого составляет 8 бит. Это значит, что он способен выполнять адресацию 256 байт (два в восьмой степени). В один момент времени он может считывать из памяти или записывать в нее 8 бит данных. Предположим, что этот простой микропроцессор располагает 128 байтами ПЗУ (начиная с адреса 0) или 128 байтами оперативной памяти (начиная с адреса 128).

Модуль постоянной памяти содержит определенный предварительно установленный постоянный набор байт. Адресная шина запрашивает у ПЗУ определенный байт, который следует передать шине данных. Когда канал чтения (RD) меняет свое состояние, модуль ПЗУ предоставляет запрошенный байт шине данных. То есть в данном случае возможно только чтение данных.

Из оперативной памяти процессор может не только считывать информацию, он способен также записывать в нее данные. В зависимости от того, чтение или запись осуществляется, сигнал поступает либо через канал чтения (RD), либо через канал записи (WR). К сожалению, оперативная память энергозависима. При отключении питания она теряет все размещенные в ней данные. По этой причине компьютеру необходимо энергонезависимое постоянное запоминающее устройство.

Более того, теоретически компьютер может обойтись и вовсе без оперативной памяти. Многие микроконтроллеры позволяют размещать необходимые байты данных непосредственно в чип процессора. Но без ПЗУ обойтись невозможно. В персональных компьютерах ПЗУ называется базовой системой ввода и вывода (БСВВ, BIOS, Basic Input/Output System). Свою работу при запуске микропроцессор начинает с выполнения команд, найденных им в BIOS.

Команды BIOS выполняют тестирование аппаратного обеспечения компьютера, а затем они обращаются к жесткому диску и выбирают загрузочный сектор. Этот загрузочный сектор является отдельной небольшой программой, которую BIOS сначала считывает с диска, а затем размещает в оперативной памяти. После этого микропроцессор начинает выполнять команды расположенного в ОЗУ загрузочного сектора. Программа загрузочного сектора сообщает микропроцессору о том, какие данные (предназначенные для последующего выполнения процессором) следует дополнительно переместить с жесткого диска в оперативную память. Именно так происходит процесс загрузки процессором операционной системы.

Оперативная память

Гарантия производителя на эти устройства составляет 10 лет, а манипуляции пользователя с ОЗУ в 99% случаев не способны вывести модуля из строя. Поэтому память намного быстрее устаревает морально, чем происходит выработка на отказ. В связи с этим нет смысла производить апгрейд в связи с техническим состоянием: оперативка способна пережить ни одну сборку ПК. Однако также нет смысла покупать устаревшие модули. Всё, что старше DDR4 – на данный момент не актуально. А в ближайшем будущем мы увидим пятое поколение ОЗУ.

Если посмотреть на общую производительность компьютера, то влияние памяти будет наименьшим относительно других комплектующих. Процессор и видеокарта куда более значимые компоненты, от которых зависит фреймрейт в играх и плавность выполнения задач. Поэтому в вопросах апгрейда памяти в основном стоит ориентироваться на объем.

Требования к нему растут с каждым годом. Если ранее 8 Гбайт хватало для любой игры и профессиональной программы, то сейчас рекомендуемое значение приближается к 16 Гбайт. То же самое с операционными системами – они становятся всё более прожорливыми. Сегодня самым минимумом даже для офисных задач являются вышеупомянутые 8 Гбайт. Меньшее количество приведет к замедлению всей системы из-за вынужденного использования файла подкачки, расположенного на жестком диске, который в разы отстает по скорости от оперативной памяти. Также обязательным условием современного компьютера является наличие двухканального режима работы памяти, который достигается за счет установки двух модулей в четные или нечетные слоты.

Команды и иерархия памяти

Чтобы лучше понять принцип работы команд, связанных с памятью, стоит обратить внимание на концепцию иерархии памяти — связь между кэшем, оперативной памятью и главным запоминающим устройством. Когда процессор работает с командой памяти, данных о которой у него еще нет в регистре, он будет продвигаться по иерархии памяти, пока не найдет нужную информацию

Большинство современных процессоров имеют три уровня кэша: первый, второй и третий. Сначала процессор проверит наличие необходимых команд в кэше первого уровня — самом маленьком и быстром из всех. Зачастую этот кэш разделен на две части: первая отведена под данные, а вторая — под команды. Помните, команды извлекаются процессором из памяти так же, как и любые другие данные. 

Типичный кэш первого уровня может состоять из нескольких сотен килобайт. Если процессор не найдет в нем то, что нужно, то перейдет к проверке кэша второго уровня (размером в несколько мегабайт), а затем — третьего (уже занимающего десятки мегабайт). В случае, если необходимых данных не будет и в кэше третьего уровня, то поиск будет производиться в оперативной памяти, а затем в накопителях. С каждым подобным «шагом», увеличивается не только объем доступных данных, но и задержка.  

После того, как процессор нашел необходимые данные, он отправляет их вверх по иерархии памяти для сокращения время поиска, на случай, если они понадобятся в дальнейшем. Для справки: процессор может считывать данные во внутреннем регистре всего за один-два цикла, в кэше первого уровня понадобится немногим больше, в кэше второго уровня уже около десяти, а третьего — несколько десятков циклов. Если приходится задействовать память или накопители, то процессору может понадобятся десятки тысяч, а то и миллионы циклов. В зависимости от системы, у каждого ядра процессора может быть собственный кэш первого уровня, общий с другим ядром кэш второго уровня и кэш третьего уровня у группы из четырех или более ядер. Более подробно речь о многоядерных процессорах пойдет позже.

Это самое легкое устройство, которое я держал в руках

Поражаюсь прогрессу, один такой гаджет, который помещается в карман, способен уместить в себе несколько национальных библиотек.

Читалка весит всего 155 грамм. Без шуток, она не ощущается в руке, а буквально парит в воздухе. Всё потому что корпус выполнен из софт-тач пластика, а аккумулятор имеет ёмкость 1300 мАч. Для электронной книги этого более чем достаточно.

Получается идеальное сочетание компактного и лёгкого корпуса, который удобно держать в любом положении: лёжа на кровати, сидя в кресле, стоя в транспорте, едя в такси, где угодно.

Я начал брать читалку с собой абсолютно всегда, она стала незаменимой вещью, как и смартфон. Это привело к очень хорошим последствиям.

Qualcomm Snapdragon 888 Plus

Восьмиядерный чипсет Qualcomm Snapdragon 888 Plus, представленный в середине текущего года, формально можно назвать «королем» Android-флагманов, так как именно он становится основой новых топовых смартфонов (например, Vivo X70 Pro+). Процессор производится по 5-нанометровому техпроцессу. Он имеет в своем составе одно ядро Kryo 680 Prime (Cortex-X1), работающее на тактовой частоте 2995 МГц, три ядра Kryo 680 Gold (Cortex-A78), выдающие 2420 МГц, и четыре ядра Kryo 680 Silver (Cortex-A55) с частотой 1800 МГц. Используемый здесь графический процессор Adreno 660 выдает 840 МГц.

Как можно догадаться по названию, Snapdragon 888 Plus не является оригинальной моделью. Это «эволюционная» версия процессора предыдущего поколения. Его главным отличием является отвечающий за работу с операциями, связанными с искусственным интеллектом, обновленный блок Qualcomm AI Engine шестого поколения. В прошлой версии платформы его производительность составляет 26 TOPS, тогда как Snapdragon 888 Plus выдает уже 32 TOPS, благодаря чему столь важные в наши дни задачи искусственного интеллекта выполняются примерно на 20% быстрее. Также стоит отметить фирменный модем Snapdragon X60 с поддержкой сетей пятого поколения, обеспечивающий передачу данных на скорости до 7,5 Гбит/с.

Топовый процессор Snapdragon 888 Plus используется уже в нескольких смартфонах, однако не все из них пока доступны в России. Это Xiaomi Mi Mix 4, RedMagic 6S Pro, Asus ROG Phone 5s Pro, Honor Magic 3 Pro и iQOO 8 Pro.

Ситуация на рынке

На данный момент ведущими производителями полупроводников являются тайваньская Taiwan Semiconductor Manufacturing Company (TSMC) и южнокорейская Samsung. Первая занимает 54% рынка, вторая — 17%.

Топ-10 производителей полупроводников, их доли рынка в долларах

(Фото: Statista)

Аналитики TrendForce выяснили, что мировой спрос на микросхемы оказался на 10–30% выше текущего предложения. По данным Susquehanna Financial Group, за первые четыре месяца 2021 года производители полупроводников резко начали отставать по исполнению заказов. Крупным компаниям приходится ждать микросхемы до 17 недель, а небольшим — до одного года или вообще отказываться от проектов. Одновременно растут цены на потребительскую электронику.

При этом со второго квартала 2021 года более 30 производителей полупроводников повысили цены на свою продукцию от 10% до 30%. В число этих компаний вошли UMC, SMIC и Power Semiconductor Manufacturing. Цены на отдельные продукты взлетели в десятки раз.

TSMC уже изменила приоритеты по выпуску своей продукции. В третьем квартале 2021 года компания собирается производить в первую очередь процессоры для Apple и чипы для автопроизводителей. Микросхемы для других клиентов, в том числе для Intel, Qualcomm, Google и Xilinx, будут отгружаться по мере их изготовления.

Apple в конце 2020 года закупила 80% мощностей TSMC для массового производства своих собственных чипов М1. Таким образом, только она в этом году сможет успешно выполнить план по производству новых iPhone, которые должны представить в сентябре или октябре. Остальные производители смартфонов оказались застигнуты врасплох глобальным дефицитом чипов. Так, Samsung уже предупредила, что может пропустить выпуск новой линейки смартфонов Galaxy Note в 2021 году.

Индустрия 4.0

Война за чипы: сменят ли ARM процессоры x86 и почему все зависит от Apple

Нехватка чипов повлияла даже на производство автомобилей. Крупнейшие мировые автоконцерны еще в начале 2021 года заявили, что им придется снижать планы по выпуску машин. Проблемы возникли у Nissan, Honda, Ford, Fiat Chrysler, Volkswagen, Suzuki, Subaru и других. Даже «АвтоВАЗ» начал выпускать автомобили Lada моделей Vesta, Xray и Largus без магнитолы. Автопроизводители потеряют в 2021 году более $110 млрд.

Диганта Дас, исследователь контрафактной электроники в Центре инженерии продвинутого цикла жизни (CALCE), предупредил, что в связи с дефицитом будут расти поставки контрафактных полупроводников. Проблема не коснется технологических гигантов, которые закупают комплектующие непосредственно у производителей, но затронет мелких производителей с более сложными цепочками поставок. Опасность этого заключается в том, что многие небольшие производители электроники заняты в таких отраслях, как здравоохранение, оборона и образование.

Кэш

Кэш — объем памяти с очень большой скоростью доступа, необходимый для ускорения обращения к данным, постоянно находящимся в памяти с меньшей скоростью доступа (оперативной памяти). При выборе процессора, помните, что увеличение размера кэш-памяти положительно влияет на производительность большинства приложений. Кэш центрального процессора различается тремя уровнями (L1, L2 и L3), располагаясь непосредственно на ядре процессора. В него попадают данные из оперативной памяти для более высокой скорости обработки. Стоит также учесть, что для многоядерных CPU указывается объем кэш-памяти первого уровня для одного ядра. Кэш второго уровня выполняет аналогичные функции, отличаясь более низкой скоростью и большим объемом. Если вы предполагаете использовать процессор для ресурсоемких задач, то модель с большим объемом кэша второго уровня будет предпочтительнее, учитывая что для многоядерных процессоров указывается суммарный объем кэша L2. Кэшем L3 комплектуются самые производительные процессоры, такие как AMD Phenom, AMD Phenom II, Intel Core i3, Intel Core i5, Intel Core i7, Intel Xeon. Кэш третьего уровня наименее быстродействующий, но он может достигать 30 Мб.

Система на чипе — сердце вашего смартфона

Подобная схема объединения важных компонентов на одной печатной плате значительно помогает в удешевление производства смартфона, а также способствует наилучшему энергопотреблению. К процессору (SoC) впоследствии подключаются остальные компоненты смартфона. 

Приведу небольшой список модулей, которые установлены в системе на кристалле.

  • Центральный процессор (ЦП) «сердце» SoC. Выполняет основные инструкции и алгоритмы операционной системы и приложений
  • Графический процессор (GPU) — выполняет задачи, связанные с графикой, отрисовка графической оболочки операционной системы, пользовательский интерфейс в приложениях, а также обрабатывают 2D и 3D графику.
  • Блок обработки изображений (ISP) — преобразует данные полученные с камеры смартфона в фотографии и видео.
  • Цифровой сигнальный процессор (DSP) — выполняет более сложные математические функции, чем центральный процессор. Производит распаковку музыкальных файлов и анализ данных датчика гироскопа.
  • Блок нейронной обработки (NPU) — широко применяемый модуль, используемый в смартфонах среднего и высшего сегмента. Служит для аппаратного ускорения работы алгоритмов нейронных сетей, компьютерного зрения, распознавания по голосу, машинного обучения и других методов искусственного интеллекта.
  • Видеокодер / декодер — обеспечивает энергоэффективное преобразование видеофайлов и форматов.
  • Модемы — преобразует беспроводные сигналы в данные, понятные вашему телефону. Компоненты включают модемы сотовой связи, WiFi и Bluetooth.

Также важно знать, что система на чипе, как и любой другой чип производится по определенному техпроцессу. Техпроцесс — это технологический процесс изготовления полупроводниковых материалов

Совершенствование технологии позволяет улучшить характеристики полупроводников (размеры, энергопотребление, рабочие частоты, стоимость).

На сегодняшний день, мобильные процессоры построенные на архитектуре ARM, выполнены по 7-нм техпроцессу, но уже сейчас ведется освоение производства полупроводников по 5-нм техпроцессу.

Виды процессоров

Существует два основных широко распространенных производителя процессоров: AMD и Intel. Они выпускают самые востребованные, доступные и производительные модели. Их мы можем увидеть практически на каждом компьютере или игровой приставке, например, на том же PlayStation или Xbox.

Все плюсы и минусы могут меняться, т.к. каждый год выходят новые модели, которые кардинально отличаются друг от друга. Но эти моменты, свойственны практически всем моделям этих производителей.

Intel — плюсы и минусы

  • Низкое энергопотребление и температура работы
  • Хорошая производительность в ПО для обработки графики и видео
  • Не такие зависимые от оперативной памяти
  • Лучше показывают себя в многозадачности
  • Цена довольно высокая по сравнению с АМД
  • Графический чип, если он есть, не такой производительный, как у конкурента
  • Работа с архивами не такая быстрая, как хотелось бы
  • Разгон не такой вариативный

AMD — плюсы и минусы

  • Высокая производительность в играх
  • Многие модели довольно «горячие», но не все
  • Адекватная цена
  • Отличная скорость работы с разными программами и архивами
  • Графический чип, если он есть — показывает хорошие результаты
  • Хорошие возможности разгона
  • Зависимые от ОЗУ

Техпроцесс

Техпроцесс — это размер, используемый при производстве процессоров. Он определяет величину транзистора, единицей измерения которого является нм (нанометр). Транзисторы, в свою очередь, составляют внутреннюю основу ЦП. Суть заключается в том, что постоянное совершенствование методики изготовления позволяет  уменьшать размер этих компонентов. В результате на кристалле процессора их размещается гораздо больше. Это способствует улучшению характеристик CPU, поэтому в его параметрах всегда указывают используемый техпроцесс. Например, Intel Core i5-760 выполнен по техпроцессу 45 нм, а Intel Core i5-2500K  по 32 нм, исходя из этой информации, можно судить о том, насколько процессор современен и превосходит по производительности своего предшественника, но при выборе необходимо учитывать и ряд других параметров.

Но сначала разберемся с диодом

Вдыхаем!

Кремний (он же Si – «silicium» в таблице Менделеева) относится к категории полупроводников, а значит он, с одной стороны, пропускает ток лучше диэлектрика, с другой, – делает это хуже, чем металл.

Хочется нам того или нет, но для понимания работы и дальнейшей история развития процессоров придется окунуться в строение одного атома кремния. Не бойтесь, сделаем это кратко и очень понятно.

У атома кремния есть четыре электрона, благодаря которым он образует связи (а если быть точным – ковалентные связи) с такими же близлежащими тремя атомами, формируя кристаллическую решетку. Пока большинство электронов находятся в связи, незначительная их часть способна двигаться через кристаллическую решетку. Именно из-за такого частичного перехода электронов кремний отнесли к полупроводникам.

Но столь слабое движение электронов не позволило бы использовать транзистор на практике, поэтому ученые решили повысить производительность транзисторов за счет легирования, а проще говоря – дополнения кристаллической решетки кремния атомами элементов с характерным размещением электронов.

Так стали использовать 5-валентную примесь фосфора, за счет чего получили транзисторы n-типа. Наличие дополнительного электрона позволило ускорить их движение, повысив пропуск тока.

При легировании транзисторов p-типа таким катализатором стал бор, в который входят три электрона. Из-за отсутствия одного электрона, в кристаллической решетке возникают дырки (выполняют роль положительного заряда), но за счет того, что электроны способны заполнять эти дырки, проводимость кремния повышается в разы.

Предположим, мы взяли кремниевую пластину и легировали одну ее часть при помощи примеси p-типа, а другую – при помощи n-типа. Так мы получили диод – базовый элемент транзистора.

Теперь электроны, находящиеся в n-части, будут стремится перейти в дырки, расположенные в p-части. При этом n-сторона будет иметь незначительный отрицательный, а p-сторона – положительный заряды. Образованное в результате этого «тяготения» электрическое поле –барьер, будет препятствовать дальнейшему перемещению электронов.

Если к диоду подключить источник питания таким образом, чтобы «–» касался p-стороны пластины, а «+» – n-стороны, протекание тока будет невозможно из-за того, что дырки притянутся в минусовому контакту источника питания, а электроны – к плюсовому, и связь между электронами p и n стороны будет утеряна за счет расширения объединенного слоя.

Но если подключить питание с достаточным напряжением наоборот, т.е. «+» от источника к p-стороне, а «–» – к n-стороне, размещенные на n-стороне электроны будут отталкиваться отрицательным полюсом и выталкиваться на p-сторону, занимая дырки в p-области.

Но теперь электроны притягивает к положительному полюсу источника питания и они продолжаются перемещаться по p-дыркам. Это явление назвали прямым смещением диода.

Медленный интернет

Ничто не может быть более расстроено, чем медленное интернет-соединение. Я знаю, вы не можете наслаждаться этим знаменитым шоу Netflix или оставаться на связи в Facebook.

Но с этой проблемой обычно довольно легко справиться. Проблема заключается в двух областях: внутренняя проблема (проблемы, связанные с вашим интернет-устройством) и внешняя (проблема вашего интернет-провайдера)

Решения:

1. Перезагрузите модем

Иногда колебание мощности или чрезмерное использование интернет-модема может привести к его перегрузке.

Чтобы восстановить все до нормального состояния, просто выключите модем, подождите несколько минут и включите его снова. Этот способ срабатывает в большинстве случаев.

2. Исправьте ваш сигнал Wi-Fi

Говоря о Wi-Fi, вы можете обнаружить, что ваш маршрутизатор и интернет в порядке, но ваш беспроводной сигнал слабый. Это может привести к замедлению – или, как минимум, к заполнению задержки при просмотре. В этом случае вам может потребоваться изменить положение, произвести перенастройку маршрутизатора.

3. Убить любое нежелательное фоновое программное обеспечение

Иногда фоновые процессы, такие как обновления программного обеспечения или любые другие программы, для которых требуется интернет, могут вызывать ваши данные, что замедляет скорость вашего интернета.

Просто проверьте ваш диспетчер задач, вы можете увидеть список этого программного обеспечения и можете убить их. Отключите все автоматические обновления в настройках, и это должно помочь.

4. Свяжитесь с вашим провайдером

Если ничего из вышеперечисленного не помогло, возможно, ваша проблема связана с внешней проблемой, например, у вашего интернет-провайдера.

Это может быть что-то вроде обновления сети, плохой погоды, исправления проводов и т. Д. Определенно, они оценят ваш интернет-сигнал и сообщат вам о необходимых действиях.

Поток инструкций

Современные процессоры могут параллельно обрабатывать несколько команд. Пока одна инструкция находится в стадии декодирования, процессор может успеть получить другую инструкцию.

Однако такое решение подходит только для тех инструкций, которые не зависят друг от друга.

Если процессор многоядерный, это означает, что фактически в нём находятся несколько отдельных процессоров с некоторыми общими ресурсами, например кэшем.

Если хотите узнать о процессорах больше, посмотрите, какие бывают популярные архитектуры: CISC, RISC, MISC и другие и виды.

Перевод статьи «How does a CPU work?»

Центральный процессор

Процессор персонального компьютера представляет собой микросхему, которая отвечает за выполнение любых операций с данными и управляет периферийными устройствами. Он содержится в специальном кремниевом корпусе, называемом кристаллом. Для краткого обозначения используют аббревиатуру — ЦП (центральный процессор) или CPU (от англ. Central Processing Unit – центральное обрабатывающее устройство). На современном рынке компьютерных комплектующих присутствуют две конкурирующие корпорации, Intel и AMD, которые беспрестанно участвуют в гонке за производительность новых процессоров, постоянно совершенствуя технологический процесс.

Блок управления и исполнительный тракт

Элементы процессора можно разделить на два основных: блок управления (он же — управляющий автомат) и исполнительный тракт (он же — операционный автомат). Говоря простым языком, процессор — это поезд, в котором машинист (управляющий автомат) управляет различными элементами двигателя (операционного автомата). 

Исполнительный тракт подобен двигателю и, как следует из названия, это путь, по которому данные передаются при их обработке. Он получает входные данные, обрабатывает их  и отправляет в нужное место после завершения операции. Блок управления, в свою очередь, направляет этот поток данных. В зависимости от инструкции, исполнительный тракт будет направлять сигналы к различным компонентам процессора, включать и выключать различные части пути, а также отслеживать состояние всего процессора.

Блок-схема работы базового процессора. Черными линиями отображен поток данных, а красными — поток команд.

Свободное время я теперь трачу на книги, а не на социальные сети

Каюсь, я был заложником Instagram и ВКонтакте: сидел там буквально каждую свободную минуту, особенно стоя в очередях или пока куда-то еду. Теперь это время я начал тратить на книги. Как появляется свободная минутка, я сразу хватаюсь за ридер и читаю.

Плюс, это не просто удобное устройство — это приятное устройство! Ридер не только хорошо лежит в руке, но и его хочется держать

Это очень важно! Потому что человеку должно быть приятно работать или потреблять контент с устройства, которым он пользуется

В качестве примера могу привести MacBook, потому что от работы за ним я кайфую. Ты садишься за стол, открываешь крышку и сразу чувствуешь приятный алюминий.

В его дизайне нет лишних деталей, которые могли бы отвлекать от работы, наоборот, устройство создаёт приятные тактильные впечатления, и его не хочется отпускать из рук. Поэтому мне в радость начинать день с написания новых материалов за этим ноутбуком, точно также и с читалкой.

А экран? Слишком маленький, работать на нём неудобно

Смартфоны с диагональю экрана около 6-7 дюймов уже считаются слишком громоздкими, пользоваться ими не всегда удобно. В нише планшетов гигантские 12-дюймовые модели тоже кажутся переростками, управляться с которыми крайне сложно.

В то же время в мире ноутбуков полноценные рабочие лошадки имеют 15-дюймовые матрицы, а размер экрана настольных моделей и вовсе ограничен лишь бюджетом владельца.

Человеку банально проще воспринимать информацию, когда перед глазами отображается не мизерная её часть, а сразу большой объем данных.

Сотни прокручиваний картинки на смартфоне и планшете приводят к потере концентрации и невозможности выполнения сложных задач.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Радио и техника
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: