Графическая стандартная ошибка среднего в excel

Диаграмма распределения осадков в Excel

​ случае, если​ частот (с помощью​ рассмотрим подробнее функции​ в задачах по​(Scroll Bar) может​

Как построить диаграмму распределения в Excel

​ разделим общее количество​ покажет это, поэтому​ EXCEL, можно прочитать​Теперь решим обратную задачу:​ в ячейку MS​ интегральная, д.б. ЛОЖЬ. ​ 1. Например, для​ Чтобы найти вероятность​ 2 значения. Например,​ на изготовление деталей​

​ весов деталей. Х​ смотрите пример.​имеется только один ряд​ функции СУММ). Сделаем​ круговых диаграмм, их​ статистике. Ниже даны​ быть вставлен с​

​ (80-10) на количество​ определить закономерности и​

​ в статье Распределения случайной​ определим х, для​ EXCEL (так сказать,​Примечание​ непрерывной равномерной величины,​ того, что непрерывная​ 0 (выпала решка)​ весом 195 г,​ – вес одной​

​=НОРМРАСП(O2;СРЗНАЧ($A$1:$J$10);СТАНДОТКЛОН($A$1:$J$10);0)​

​ данных;​ дополнительный столбец «Относительная​ создание.​ ссылки на статьи​ вкладки​ групп. Количество групп​ отклонения будет довольно​

​ величины в MS​ которого вероятность, того​ наиболее близкое к​

​: Для дискретного распределения вероятность​ распределенной на интервале​ случайная величина Х​ и 1 (не​

​ из деталей.​Там можно поиграться,​все значения положительные;​ частота». В первую​

​График нормального распределения имеет​ с описанием соответствующих​Разработчик​ устанавливается настройками полосы​ легко.​ EXCEL.​

​ что случайная величина​ +∞).​ случайной величине принять​ плотность​ примет значение, заключенное​ выпала решка) (см.​ что вероятность выбрать​

​Если из заданной ГС​ построить либо интегральную,​практически все значения выше​ ячейку введем формулу:​ форму колокола и​ функций MS EXCEL. В​

​(Developer).​ прокрутки. Чуть позже​«​В двух словах:​ Х примет значение​2) Найдем вероятность, что​ некое значение также​ вероятности равна 1/(0,5-0)=2.​ в интервале (а;​ схему Бернулли). Если​ деталь легче 195​

​ мы выбираем случайным​ либо весовую функцию.​ нуля;​Способ второй. Вернемся к​

​ симметричен относительно среднего​ этих статьях построены​

​На рисунке ниже видно,​ разъясним это подробнее.​Неужели наше мероприятие не​Добавляем полосу прокрутки​

​Для этого необходимо на​

Круговые диаграммы для иллюстрации распределения

​ случайная величина, распределенная​ часто называется плотностью​ А для экспоненциального​ b), необходимо найти​ монета симметричная, то​ г равна 0,5.​ образом один объект,​ Ну и, конечно,​не более семи категорий;​

​ таблице с исходными​ значения. Получить такое​ графики плотности вероятности​ как я настроил​

  • ​Далее при помощи функции​ интересно гражданам в​
  • ​ к гистограмме или​
  • ​ графике функции распределения​ по стандартному нормальному​
  • ​ вероятности (англ. probability​
  • ​ распределения с параметром​ приращение функции распределения​

​ вероятность каждого исхода​Типичный график Функции распределения​ имеющей характеристику Х,​

​ в качестве аргумента​каждая категория соответствует сегменту​ данными. Вычислим интервалы​

​ графическое изображение можно​ и функции распределения,​ параметры элемента управления​ЧАСТОТА​ возрасте от 20​ к графику распределения​ найти точку, для​ распределению, приняла отрицательное​ mass function (pmf)). В справке​

​ лямбда=5, значение плотности​ на этом интервале:​ равна 1/2. При​

exceltable.com>

Функция СТЬЮДЕНТ.ТЕСТ()

Функция СТЬЮДЕНТ.ТЕСТ() используется для оценки различия двух выборочных средних . До MS EXCEL 2010 имелась аналогичная функция ТТЕСТ() .

Примечание : В английской версии функция носит название T.TEST(), старая версия – TTEST().

Функция СТЬЮДЕНТ.ТЕСТ() имеет 4 параметра. Первые два – это ссылки на диапазоны ячеек, содержащие выборки из 2-х сравниваемых распределений.

Третий параметр имеет название «хвосты». Этот параметр задает тип проверяемой гипотезы: односторонняя (=1) или двухсторонняя (=2). Если мы проверяем двухстороннюю гипотезу , то смотрим, не попало ли значение тестовой статистики в один из 2-х хвостов соответствующего t-распределения . Если мы проверяем одностороннюю гипотезу (имеется ввиду гипотеза μ 1 2 ), то «хвост» всего один.

Как было сказано выше, эта функция вычисляет p -значение для 3-х различных двухвыборочных t -тестов . За это отвечает четвертый параметр функции, который принимает значения от 1 до 3:

  • Парный двухвыборочный t-тест для средних;
  • Двухвыборочный t-тест с одинаковыми дисперсиями >;
  • Двухвыборочный t-тест с разными дисперсиями .

Таким образом, p -значение для двухсторонней гипотезы (равные дисперсии ) вычисляется по формуле (см. файл примера ): =СТЬЮДЕНТ.ТЕСТ( выборка1 >;>выборка2 >;>или =2*(1-СТЬЮДЕНТ.РАСП(ABS(t >);>

Для односторонней гипотезы μ 1 2 p -значение вычисляется по формуле: =СТЬЮДЕНТ.ТЕСТ( выборка1 >;>выборка2 >;>или =СТЬЮДЕНТ.РАСП(t >;>

Для односторонней гипотезы μ 1 2 p -значение вычисляется по формуле: =1-СТЬЮДЕНТ.ТЕСТ( выборка1 >;>выборка2 >;>или =1-СТЬЮДЕНТ.РАСП(t >;>

Распределение Стьюдента и нормальное распределение в Excel

Рассматриваемая функция возвращает значение t, соответствующее условию P(|x|>t)=p. Здесь x является значением некоторой случайной величины с распределением Стьюдента, у которого число степеней свобод соответствует k (второй аргумент функции СТЮДРАСПОБР).

Примечания:

  1. Распределение Стьюдента является одним из видов распределения случайной величины, близкое к нормальному распределению с характерным отличием – сниженная концентрацией отклонений в средней части распределения. Иное название – t-распределение.
  2. Квантилем считается некоторое значение, которое с определенной вероятностью (фиксированной) не будет превышено случайной величиной.
  3. Функция СТЮДРАСПОБР считается устаревшей начиная с версии MS Office 2010. Она оставлена для обеспечения совместимости с другими табличными редакторами и документами, созданными в более старых версиях табличного редактора. В новых версиях следует использовать усовершенствованные аналоги: СТЬЮДЕНТ.ОБР.2Х или СТЬЮДЕНТ.ОБР.

Способ 2. Расчет стандартного отклонения в разделе «Формулы»

Через вкладку «Формулы» в программе Excel также возможно рассчитать стандартное отклонение. Алгоритм вычисления состоит из следующих шагов:

  1. По аналогичной схеме выделить любую свободную ячейку на рабочем листе. В этот элемент в дальнейшем будет выводиться результат.
  2. В графе инструментов сверху главного меню программы найти слово «Формулы» и щелкнуть по нему ЛКМ.

Переход в раздел формул в Excel

  1. В открывшейся области найти подраздел «Библиотека функций, а затем развернуть вкладку «Другие функции».
  2. В контекстном меню выбрать тип «Статистические» и поставить курсор мышки на это слово.
  3. Развернется дополнительное контекстное окно, в котором пользователю необходимо щелкнуть по строчке «СТАНДОТКЛОН.В».

Действия по выбору формулы стандартного отклонения

  1. В запустившемся окне «Аргументы функции» надо заполнить два поля, указав координаты соответствующих ячеек на рабочем листе или в табличном массиве. Нужные значения также можно прописать вручную.
  2. После выполнения этих манипуляций нажать на «ОК».

Заполнение полей в меню «Аргументы функции»

  1. Удостовериться, что в указанной ранее ячейке отобразился результат работы формулы – число, характеризующее среднеквадратичное отклонение.

Пример использования т-критерия Стьюдента

А пример будет достаточно простой: мне интересно, стали ли люди выше за последние 100 лет. Для этого нужно подобрать некоторые данные. Я обнаружил интересную информацию в достаточно известной статье The Guardian (Tall story’s men and women have grown taller over last century, Study Shows (The Guardian, July 2016), которая сравнивает средний возраст человека в разных странах в 1914 году и в аналогичных странах в 2014 году.

Там приведены данные практически по всем государствам. Однако, я взял лишь 5 стран для простоты вычислений: это Россия, Германия, Китай, США и ЮАР, соответственно 1914 год и 2014 год.

Общее количество наблюдений – 5 в 1914 году в группе 1914 года и общее значение также 5 в 2014 году. Будем думать опять же для простоты, что эти данные сопоставимы, и с ними можно работать.

Дальше нужно выбрать критерии – критерии, по которым мы будем давать ответ. Равны ли средние по росту в 1914 году x̅1914 и в 2014 году x̅2014. Я считаю, что нет. Поэтому моя гипотеза это то, что они не равны (x̅1914≠x̅2014). Соответственно альтернативная гипотеза моему предположению, так называемая нулевая гипотеза (нулевая гипотеза консервативна, обратная вашей, часто говорит об отсутствии статистически значимых связей/зависимостей) будет говорить о том, что они между собой на самом деле равны (x̅1914=x̅2014), то есть о том, что все эти находки случайны, и я, по сути, не прав.

Для чего используется t-критерий Стьюдента?

t-критерий Стьюдента используется для определения статистической значимости различий средних величин. Может применяться как в случаях сравнения независимых выборок (например, группы больных сахарным диабетом и группы здоровых), так и при сравнении связанных совокупностей (например, средняя частота пульса у одних и тех же пациентов до и после приема антиаритмического препарата). В последнем случае рассчитывается парный t-критерий Стьюдента

В каких случаях можно использовать t-критерий Стьюдента?

Для применения t-критерия Стьюдента необходимо, чтобы исходные данные имели нормальное распределение. Также имеет значение равенство дисперсий (распределения) сравниваемых групп (гомоскедастичность). При неравных дисперсиях применяется t-критерий в модификации Уэлча (Welch’s t).

При отсутствии нормального распределения сравниваемых выборок вместо t-критерия Стьюдента используются аналогичные методы непараметрической статистики, среди которых наиболее известными является U-критерий Манна — Уитни.

Как интерпретировать значение t-критерия Стьюдента?

Полученное значение t-критерия Стьюдента необходимо правильно интерпретировать. Для этого нам необходимо знать количество исследуемых в каждой группе (n1 и n2). Находим число степеней свободы f по следующей формуле:

После этого определяем критическое значение t-критерия Стьюдента для требуемого уровня значимости (например, p=0,05) и при данном числе степеней свободы f по таблице (см. ниже).

Сравниваем критическое и рассчитанное значения критерия:

  • Если рассчитанное значение t-критерия Стьюдента равно или больше критического, найденного по таблице, делаем вывод о статистической значимости различий между сравниваемыми величинами.
  • Если значение рассчитанного t-критерия Стьюдента меньше табличного, значит различия сравниваемых величин статистически не значимы.

Вы можете внести данные для расчета критерия Т-Стьюдента поочередно вручную или скопировать их из вашего Excel файла.

Динамическая гистограмма или график распределения частот в Excel

​ птичку около записи​​Отрицательное биномиальное распределение: функция ОТРБИНОМ.РАСП()​Урок подготовлен для Вас​ чтобы отобразить на​ должно быть показано.​ покажем все это​ является 0,5-квантилем нормального​

​ В статье Распределения​​ по стандартному нормальному​

​ распределения F(x) называют​ — Probability Distribution​ вероятность (т.е. вероятность​

Что такое гистограмма или график распределения частот?

​).​ произведенная станком, весит​Поскольку в математической статистике,​antycapral​ инструмента «Диаграммы».​ «Вывод графика»:​В математической статистике, например​ командой сайта office-guru.ru​ графике только нужные​ Это отличное дополнение​ на гистограмме.​

​ распределения. В файле​ случайной величины в​ распределению (см. картинку​ в функциях MS​ Function или просто​ попадания в любую​Существует 2 типа распределений:​ 200 г, а​ любой вывод делается​, нет, нужно что​Частота распределения заданных значений:​После нажатия ОК получаем​

На какие вопросы отвечает гистограмма распределения?

​ MS EXCEL приведены​ выше), приняла положительное​ EXCEL интегральной функцией​ Distribution) в зависимости​ точку (заданную до​ непрерывные распределения и​ самая легкая -​ только на основании​ бы второй график​С помощью круговой диаграммы​ такой график с​

​ или для построения​​Перевел: Антон Андронов​ примере задано два​Краткий ответ:​ из моих самых​​ и другой квантиль​

​ распределения, для которых​ значение. Согласно свойству​ распределения. Этот термин​ от контекста может​ опыта) для непрерывной​ дискретные распределения.​ 190 г. Вероятность​ характеристики Х (абстрагируясь​ был похож на​

Динамическая гистограмма

​ того, что случайно​ от самих объектов),​ нормальное распределение.​ которые находятся в​В интервалах не очень​ часто используются:​В статье приведен перечень​

Как это работает?

​ один для данных​​ диапазоны, элемент управления​ поскольку она дает​ 0,8-квантиль равен 0,84.​ имеются соответствующие функции,​

Формулы

​ равна F(+∞)-F(0)=1-0,5=0,5.​ функций, например в​ функции распределения, так​ нулю). Т.к. в​ принимать только определенные​ выбранная деталь Х​

​ то с этой​anvg​ одном столбце или​ много значений, поэтому​Нормальное распределение: функции НОРМ.РАСП(), НОРМ.СТ.РАСП(), НОРМ.ОБР() и др. ​ распределений вероятности, имеющихся​ —​

​ «Полоса прокрутки» в​​ огромное количество информации​​В англоязычной литературе обратная​ позволяющие вычислить вероятности.​В MS EXCEL для​ НОРМ.РАСП(x; среднее; стандартное_откл;​ и кее Плотности​ противном случае сумма​ значения и количество​​ будет весить меньше​​ точки зрения генеральная​​: Доброе время суток.​​ одной строке. Сегмент​

​ в MS EXCEL​​rngGroups​​ сочетании с гистограммой.​ о данных.​​ функция распределения часто​​Вспомним задачу из предыдущего​

Динамический именованный диапазон

​ нахождения этой вероятности​интегральная​ распределения.​ вероятностей всех возможных​ таких значений конечно,​ 200 г равна​

​ совокупность представляет собой​Находим статистические параметры​ круга – это​ низкими.​ др.​ 2010 и в​(столбец Frequency) и​Чтобы всё работало, первым​В данном случае мы​ называется как Percent​ раздела: Найдем вероятность,​​ используйте формулу =НОРМ.СТ.РАСП(9,999E+307;ИСТИНА)​​). Если функция MS​Из определения функции плотности​ значений случайной величины​​ то соответствующее распределение​​ 1. Вероятность того,​

Элемент управления «Полоса прокрутки»

​ N чисел, среди​​ по вашим данным​​ доля каждого элемента​​Распределение Фишера (F-распределение): функции F.РАСП(), F.ОБР() и др.​​ более ранних версиях.  Даны​​ второй для подписей​

​ делом нужно при​ хотим знать, как​ Point Function (PPF).​ что случайная величина,​ -НОРМ.СТ.РАСП(0;ИСТИНА) =1-0,5.​​ EXCEL должна вернуть​​ распределения следует, что​ будет равна бесконечности,​ называется дискретным. Например,​

Гистограмма

​ что будет весить​ которых, в общем​ и для середин​ массива в сумме​Теперь необходимо сделать так,​Хи-квадрат распределение: функции ХИ2.РАСП(), ХИ2.ОБР() и др.​

Есть вопросы?

​ ссылки на статьи​ горизонтальной оси —​ помощи формул вычислить​ много участников окажется​

​Примечание​ распределенная по стандартному​Вместо +∞ в​ Функцию распределения, то​ p(х)>=0. Следовательно, плотность​ а не 1.​ при бросании монеты,​

​ меньше 190 г​ случае, могут быть​ интервалов рассчитываем по​

​ всех элементов.​ чтобы по вертикальной​Все эти распределения связаны​

​ с описанием соответствующих​rngCount​​ размер группы и​​ в возрастных группах​

​: При вычислении квантилей в MS​

office-guru.ru>

Таблица нормального распределения

Таблицы нормального распределения встречаются двух типов:

— таблица плотности;

— таблица функции (интеграла от плотности).

Таблица плотности используется редко. Тем не менее, посмотрим, как она выглядит. Допустим, нужно получить плотность для z = 1, т.е. плотность значения, отстоящего от матожидания на 1 сигму. Ниже показан кусок таблицы. 

В зависимости от организации данных ищем нужное значение по названию столбца и строки. В нашем примере берем строку 1,0 и столбец , т.к. сотых долей нет. Искомое значение равно 0,2420 (0 перед 2420 опущен). 

Функция Гаусса симметрична относительно оси ординат. Поэтому φ(z)= φ(-z), т.е. плотность для 1 тождественна плотности для -1, что отчетливо видно на рисунке.

Чтобы не тратить зря бумагу, таблицы печатают только для положительных значений.

На практике чаще используют значения функции стандартного нормального распределения, то есть вероятности для различных z.

В таких таблицах также содержатся только положительные значения. Поэтому для понимания и нахождения любых нужных вероятностей следует знать свойства стандартного нормального распределения.

Функция Ф(z) симметрична относительно своего значения 0,5 (а не оси ординат, как плотность). Отсюда справедливо равенство:

Это факт показан на картинке:

Значения функции Ф(-z) и Ф(z) делят график на 3 части. Причем верхняя и нижняя части равны (обозначены галочками). Для того, чтобы дополнить вероятность Ф(z) до 1, достаточно добавить недостающую величину Ф(-z). Получится равенство, указанное чуть выше.

Если нужно отыскать вероятность попадания в интервал (0; z), то есть вероятность отклонения от нуля в положительную сторону до некоторого количества стандартных отклонений, достаточно от значения функции стандартного нормального распределения отнять 0,5:

Для наглядности можно взглянуть на рисунок.

На кривой Гаусса, эта же ситуация выглядит как площадь от центра вправо до z.

Довольно часто аналитика интересует вероятность отклонения в обе стороны от нуля. А так как функция симметрична относительно центра, предыдущую формулу нужно умножить на 2:

Рисунок ниже.

Под кривой Гаусса это центральная часть, ограниченная выбранным значением –z слева и z справа.

Указанные свойства следует принять во внимание, т.к. табличные значения редко соответствуют интересующему интервалу

Для облегчения задачи в учебниках обычно публикуют таблицы для функции вида:

Если нужна вероятность отклонения в обе стороны от нуля, то, как мы только что убедились, табличное значение для данной функции просто умножается на 2.

Теперь посмотрим на конкретные примеры. Ниже показана таблица стандартного нормального распределения. Найдем табличные значения для трех z: 1,64, 1,96 и 3.

Как понять смысл этих чисел? Начнем с z=1,64, для которого табличное значение составляет 0,4495. Проще всего пояснить смысл на рисунке.

То есть вероятность того, что стандартизованная нормально распределенная случайная величина попадет в интервал от до 1,64, равна 0,4495. При решении задач обычно нужно рассчитать вероятность отклонения в обе стороны, поэтому умножим величину 0,4495 на 2 и получим примерно 0,9. Занимаемая площадь под кривой Гаусса показана ниже.

Таким образом, 90% всех нормально распределенных значений попадает в интервал ±1,64σ от средней арифметической. Я не случайно выбрал значение z=1,64, т.к. окрестность вокруг средней арифметической, занимающая 90% всей площади, иногда используется для проверки статистических гипотез и расчета доверительных интервалов. Если проверяемое значение не попадает в обозначенную область, то его наступление маловероятно (всего 10%).

Для проверки гипотез, однако, чаще используется интервал, накрывающий 95% всех значений. Половина вероятности от 0,95 – это 0,4750 (см. второе выделенное в таблице значение).

Для этой вероятности z=1,96. Т.е. в пределах почти ±2σ от средней находится 95% значений. Только 5% выпадают за эти пределы.

Еще одно интересное и часто используемое табличное значение соответствует z=3, оно равно по нашей таблице 0,4986. Умножим на 2 и получим 0,997. Значит, в рамках ±3σ от средней арифметической заключены почти все значения.

Так выглядит правило 3 сигм для нормального распределения на диаграмме.

С помощью статистических таблиц можно получить любую вероятность. Однако этот метод очень медленный, неудобный и сильно устарел. Сегодня все делается на компьютере. Далее переходим к практике расчетов в Excel.

Построение гистограммы распределения без использования надстройки Пакет анализа

Порядок действий при построении гистограммы в этом случае следующий:

  • определить количество интервалов у гистограммы;
  • определить ширину интервала (с учетом округления);
  • определить границу первого интервала;
  • сформировать таблицу интервалов и рассчитать количество значений, попадающих в каждый интервал (частоту);
  • построить гистограмму.

СОВЕТ: Часто рекомендуют, чтобы границы интервала были на один порядок точнее самих данных и оканчивались на 5. Например, если данные в массиве определены с точностью до десятых: 1,2; 2,3; 5,0; 6,1; 2,1, …, то границы интервалов должны быть округлены до сотых: 1,25-1,35; 1,35-1,45; … Для небольших наборов данных вид гистограммы сильно зависит количества интервалов и их ширины. Это приводит к тому, что сам метод гистограмм, как инструмент описательной статистики, может быть применен только для наборов данных состоящих, как минимум, из 50, а лучше из 100 значений.

В наших расчетах для определения количества интервалов мы будем пользоваться формулой =ЦЕЛОЕ(КОРЕНЬ(n))+1 .

Примечание: Кроме использованного выше правила (число карманов = √n), используется ряд других эмпирических правил, например, правило Стёрджеса (Sturges): число карманов =1+log2(n). Это обусловлено тем, что например, для n=5000, количество интервалов по формуле √n будет равно 70, а правило Стёрджеса рекомендует более приемлемое количество — 13.

Расчет ширины интервала и таблица интервалов приведены в файле примера на листе Гистограмма . Для вычисления количества значений, попадающих в каждый интервал, использована формула массива на основе функции ЧАСТОТА() . О вводе этой функции см. статью Функция ЧАСТОТА() — Подсчет ЧИСЛОвых значений в MS EXCEL.

В MS EXCEL имеется диаграмма типа Гистограмма с группировкой, которая обычно используется для построения Гистограмм распределения.

В итоге можно добиться вот такого результата.

Примечание: О построении и настройке макета диаграмм см. статью Основы построения диаграмм в MS EXCEL.

Одной из разновидностей гистограмм является график накопленной частоты (cumulative frequency plot).

На этом графике каждый столбец представляет собой число значений исходного массива, меньших или равных правой границе соответствующего интервала. Это очень удобно, т.к., например, из графика сразу видно, что 90% значений (45 из 50) меньше чем 495.

СОВЕТ : О построении двумерной гистограммы см. статью Двумерная гистограмма в MS EXCEL.

Примечание: Альтернативой графику накопленной частоты может служить Кривая процентилей, которая рассмотрена в статье про Процентили.

Примечание: Когда количество значений в выборке недостаточно для построения полноценной гистограммы может быть полезна Блочная диаграмма (иногда она называется Диаграмма размаха или Ящик с усами).

Построим диаграмму распределения в Excel. А также рассмотрим подробнее функции круговых диаграмм, их создание.

Нормальное распределение. Построение графика в Excel. Концепция шести сигм

Наверное, не все знают, что в Excel есть встроенная функция для построения нормального распределения. Графики нормального распределения часто используются для демонстрации идей статистической обработки данных.

Функция НОРМРАСП имеет следующий синтаксис:

НОРМРАСП (Х; среднее; стандартное_откл; интегральная)

Х — аргумент функции; фактически НОРМРАСП можно трактовать как y=f(x); при этом функция возвращает вероятность реализации события Х

Среднее (µ) — среднее арифметическое распределения; чем дальше Х от среднего, тем ниже вероятность реализации такого события

Стандартное_откл (σ) — стандартное отклонение распределения; мера кучности; чем меньше σ, тем выше вероятность у тех Х, которые расположены ближе к среднему

Интегральная — логическое значение, определяющее форму функции. Если «интегральная» имеет значение ИСТИНА, функция НОРМРАСП возвращает интегральную функцию распределения, тот есть суммарную вероятность всех событий для аргументов от -∞ до Х; если «интегральная» имеет значение ЛОЖЬ, возвращается вероятность реализации события Х, точнее говоря, вероятность событий находящихся в некотором диапазоне вокруг Х

Например, для µ=0 имеем:

Скачать заметку в формате Word, пример в формате Excel

Здесь по оси абсцисс единица измерения – σ, или (что то же самое), можно сказать, что график построен для σ = 1. То есть, «-2» на графике означает -2σ. По оси ординат шкала убрана умышленно, так как она лишена смысла. Точнее говоря, высота кривой зависит от плотности точек на оси абсцисс, по которым мы строим график. Например, если на интервал от 0 до 1σ приходится 10 точек, то высота в максимуме составит 4%, а если 20 точек – 2%. Здесь проценты означают вероятность попадания случайной величины в узкий диапазон окрестности точки на оси абсцисс. Зато имеет смысл площадь под кривой на определенном интервале. И эта площадь не зависит от плотности точек. Так, например, площадь под кривой на интервале от 0 до 1σ составляет 34,13%. Это значение можно интерпретировать следующим образом: с вероятностью 68,26% случайная величина Х попадет в диапазон µ ± σ.

Теперь, наверное, вам будет лучше понятен смысл выражения «качество шести сигм». Оно означает, что производство налажено таким образом, что случайная величина Х (например, диаметр вала) находясь в диапазон µ ± 6σ, всё еще удовлетворяет техническим условиям (допускам). Это достигается за счет значительного уменьшения сигмы, то есть случайная величина Х очень близка к нормативному значению µ. На графике ниже представлено три ситуации, когда границы допуска остаются неизменными, а благодаря повышению качества (уменьшению вариабельности, сужению сигма) доля брака сокращается:

На первом рисунке только 1,5σ попадают в границы допуска, то есть только 86,6% деталей являются годными. На втором рисунке уже 3σ попадают в границы допуска, то есть 99,75% являются годными. Но всё еще 25 деталей из каждых 10 000 произведенных являются браком. На третьем рисунке целых 6σ попадают в границы допуска, то есть в брак попадут только две детали на миллиард изготовленных!

Вообще-то говоря, измерение качества в терминах сигм использует не совсем нормальное распределение. Вот что пишет на эту тему Википедия:

Опыт показывает, что показатели процессов имеют тенденцию изменяться с течением времени. В результате со временем в промежуток между границами поля допуска будет входить меньше, чем было установлено первоначально. Опытным путём было установлено, что изменение параметров во времени можно учесть с помощью смещения в 1,5 сигма. Другими словами, с течением времени длина промежутка между границами поля допуска под кривой нормального распределения уменьшается до 4,5 сигма вследствие того, что среднее процесса с течением времени смещается и/или среднеквадратическое отклонение увеличивается.

Широко распространённое представление о «процессе шесть сигма» заключается в том, что такой процесс позволяет получить уровень качества 3,4 дефектных единиц на миллион готовых изделий при условии, что длина под кривой слева или справа от среднего будет соответствовать 4,5 сигма (без учёта левого или правого конца кривой за границей поля допуска). Таким образом, уровень качества 3,4 дефектных единиц на миллион готовых изделий соответствует длине промежутка 4,5 сигма, получаемых разницей между 6 сигма и сдвигом в 1,5 сигма, которое было введено, чтобы учесть изменение показателей с течением времени. Такая поправка создана для того, чтобы предупредить неправильною оценку уровня дефектности, встречающееся в реальных условиях.

С моей точки зрения, не вполне внятное объяснение. Тем не менее, во всем мире принята следующая таблица соответствия числа дефектов и уровня качества в сигмах:

Построение гистограмм распределения в Excel

В связи с написанием диплома тема подсчёта статистики для меня крайне актуальна, посему делюсь найденной крайне полезной стаейкой по построению гистограмм распределения. Точнее частью этой статьи с наипростейшим алгоритмом постороения этих гистограмм Excel. Лично я строю этим способом гистограммы распределения значений показателей психологических тестов, ну а там уж каждому по потребностям, распределение чего надо посмотреть.

В современном мире к статистике проявляется большой интерес, поскольку это отличный инструмент для анализа и принятия решений, а также это отличное средство для поиска причин нарушений процесса и их устранения. Статистический анализ применим во многих сферах, где существуют большие массивы данных: естественно, в первую очередь я скажу, что металлургии, а также в экономике, биологии, политике, социологии и. много где еще. Статья эта будет, как несложно догадаться по ее названию, про использование некоторых средств статистического анализа, а именно — гистограммам. Ну, поехали.

Статистический анализ в Excel можно осуществлять двумя способами: • С помощью функций • С помощью средств надстройки «Пакет анализа». Ее, как правило, еще необходимо установить.

Чтобы установить пакет анализа в Excel, выберите вкладку «Файл» (а в Excel 2007 это круглая цветная кнопка слева сверху), далее — «Параметры», затем выберите раздел «Надстройки». Нажмите «Перейти» и поставьте галочку напротив «Пакет анализа».

А теперь — к построению гистограмм распределения по частоте и их анализу.

Речь пойдет именно о частотных гистограммах, где каждый столбец соответствует частоте появления* значения в пределах границ интервалов. Например, мы хотим посмотреть, как у нас выглядит распределение значения предела текучести стали S355J2 в прокате толщиной 20 мм за несколько месяцев. В общем, хотим посмотреть, похоже ли наше распределение на нормальное (а оно должно быть таким).

*Примечание: для металловедческих целей типа оценки размера зерна или оценки объемной доли частиц этот вид гистограмм не пойдет, т.к. там высота столбика соответствует не частоте появления частиц определенного размера, а доле объема (а в плоскости шлифа — площади), которую эти частицы занимают.

График нормального распределения выглядит следующим образом:

График функции Гаусса

Мы знаем, что реально такой график может быть получен только при бесконечно большом количестве измерений. Реально же для конечного числа измерений строят гистограмму, которая внешне похожа на график нормального распределения и при увеличении количества измерений приближается к графику нормального распределения (распределения Гаусса).

Построение гистограмм с помощью программ типа Excel является очень быстрым способом проверки стабильности работы оборудования и добросовестности коллектива: если получим «кривую» гистограмму, значит, либо прибор не исправен или мы данные неверно собрали, либо кто-то где-то преднамеренно мухлюет или же просто неверно использует оборудование.

А теперь — построение гистограмм!

Способ 1-ый. Халявный.

  1. Идем во вкладку «Анализ данных» и выбираем «Гистограмма».
  2. Выбираем входной интервал.
  3. Здесь же предлагается задать интервал карманов, т.е. те диапазоны, в пределах которых будут лежать наши значения. Чем больше значений в интервале — тем выше столбик гистограммы. Если мы оставим поле «Интервалы карманов» пустым, то программа вычислит границы интервалов за нас.
  4. Если хотим сразу же вывести график,то ставим галочку напротив «Вывод графика».
  5. Нажимаем «ОК».
  6. Вот, вроде бы, и все: гистограмма готова. Теперь нужно сделать так, чтобы по вертикальной оси отображалась не абсолютная частота, а относительная.
  7. Под появившейся таблицей со столбцами «Карман» и «Частота» под столбцом «Частота» введем формулу «=СУММ» и сложим все абсолютные частоты.
  8. К появившейся таблице со столбцами «Карман» и «Частота» добавим еще один столбец и назовем его «Относительная частота».
  9. Во всех ячейках нового столбца введем формулу, которая будет рассчитывать относительную частоту: 100 умножить на абсолютную частоту (ячейка из столбца «частота») и разделить на сумму, которую мы вычислил в п. 7.
Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Радио и техника
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: